

World Congress on Genetics Applied to Livestock Production Aotea Centre Auckland, New Zealand, 11–16 February 2018

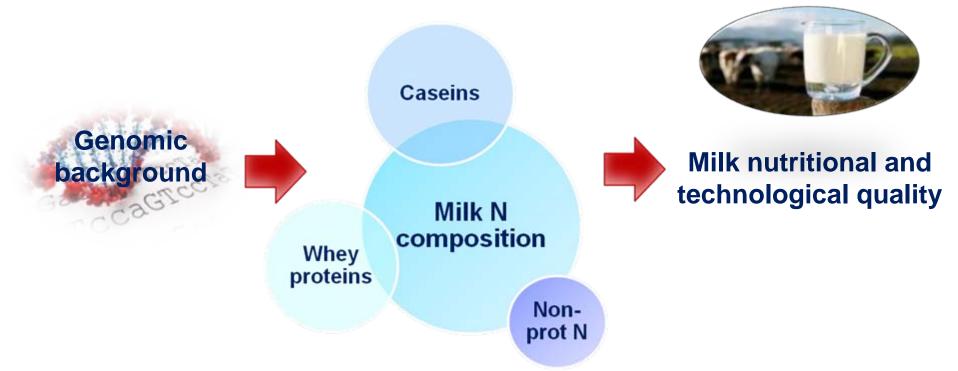
Università degli Studi di Padova

Exploiting the network-based association weight matrix approach for the genetic dissection of milk nitrogen fractions in dairy cattle

S. Pegolo^{1*}, N. Mach², Y. Ramayo-Caldas^{2,3}, A. Rossoni⁴, <u>E. Santus⁴</u>, G. Bittante¹ & A. Cecchinato¹

¹ Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy

² UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

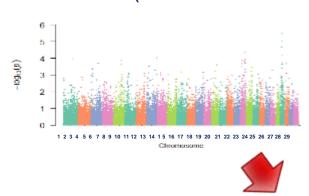

³ Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, 08140, Spain

⁴Italian Brown Breeders Association, Loc. Ferlina 204, Bussolengo 37012, Italy

Dr. Enrico Santus

^{*}Corresponding author: sara.pegolo@unipd.it

Background



Aim of the study

GWAS results (P-val & additive effect)

Gene-set enrichment analysis

Associated weight matrix (AWM)

and network framework

	к-CN	β-LG	MUN
SUSD1	-0.925	-2.066	
SSPN	1.177	-1.108	
TERT	0.118	0.159	

Deeper knowledge about genetic regulation of the physiological and cellular mechanisms required for milk protein synthesis and secretion

Methods

↑ Mills gamples from 4 044 Provin

- Milk samples from 1,011 Brown Swiss cows (Cowability project)
- 37,568 SNPs (Illumina Bovine SNP50)
- Milk N composition (caseins, whey proteins, non-prot N)

GWAS

Single marker regression

(DIM, parity, herd as fixed factors, P<5*10⁻⁵ (Genabel R package)

Pathway analysis

SNP selection: SNP-to-gene distance <15

kb, P<0.05 (BiomaRt R package)

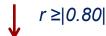
Gene-set enrichment GO and KEGG databases, FDR<0.05 (goseq R package)

Gene-network analysis

Methods - AWM construction

SNP selection criteria from GWAS:

- ✓ Selection of key phenotype (κ-CN)
- ✓ Primary SNP selection: P≤0.05 for κ-CN
- ✓ Secondary SNP selection: SNPs with P ≤0.05 in ≥3 non- key phenotypes
- ✓ **SNP-to-gene distance**: <10 kb
- ✓ One SNP-One Gene: 1) >n° phenotypes; 2) lowest *P*-val

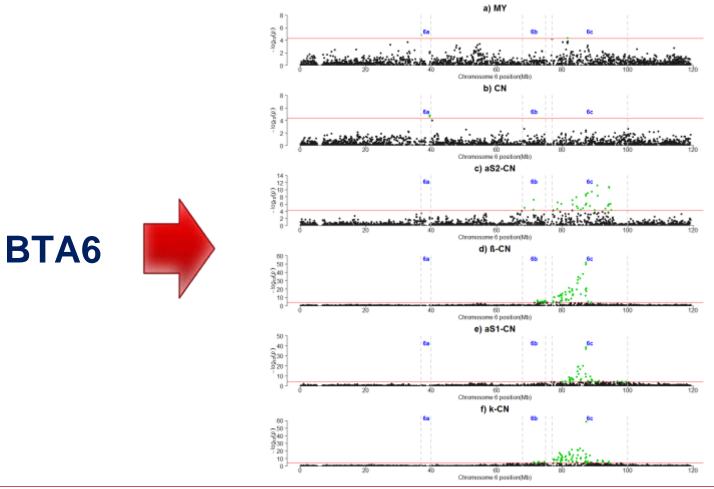

	Pearsons					
		κ-CN	β-LG	MUN		
7	SUSD1	-0.925	-2.066			
7	SSPN	1.177	-1.108			
	TERT	0.118	0.159			

Dooroon's

- * Rows: 1,917 SNP/genes
- Columns: milk N composition
- Cell: normalized (z-scores) additive effect

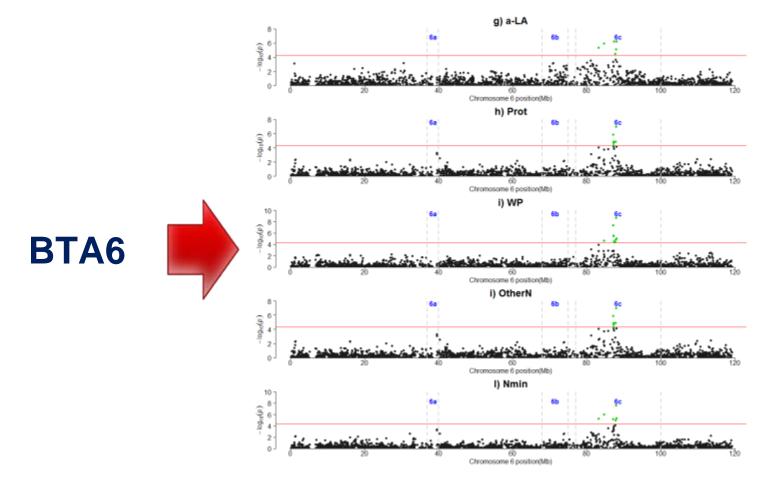
PCIT algorithm

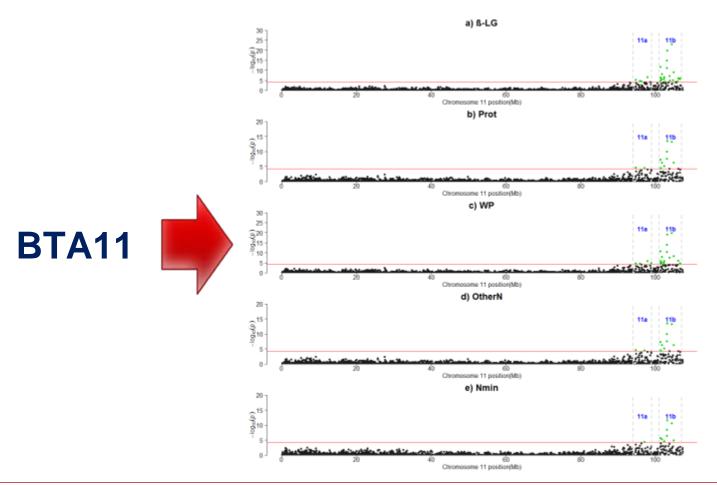
(Partial correlations - Information Theory)



Biologically relevant interactions and key regulators

(Cluego, NetworkAnalyzer, IPA)





Results – GWAS

170 SNPs: 103 SNPs on **BTA6** (~77.19-99.45 Mbp, including casein cluster); **22** SNPs on **BTA11** (~101.27 - 106.54 Mbp, including the *PAEP* gene)

Heritability estimations are in general high Heritability for casein fractions are higher than total casein

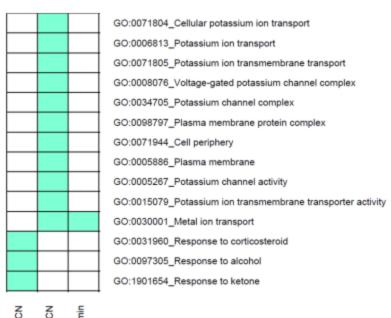
Results – GWAS and pathway analysis

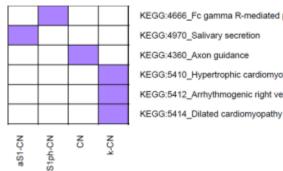
37000 SNPs

17000 SNPs btw 15Kb (flanking)

PATHWAY ANALYSIS

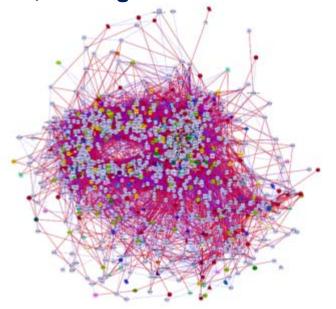
13000 genes

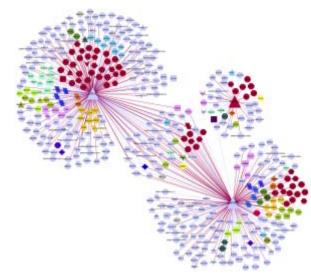

600 genes with significant associations with MY or PROT



Results — GWAS and pathway analysis

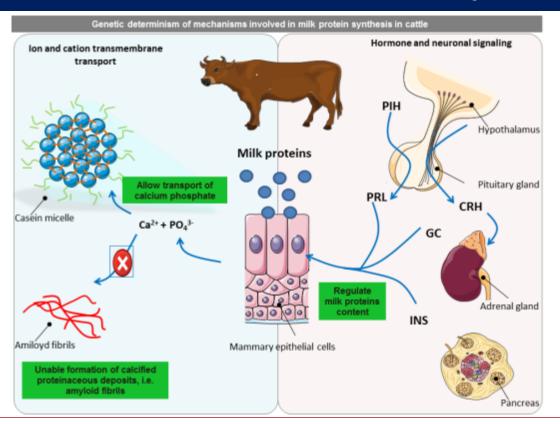
PATHWAY ANALYSIS


KEGG:4666 Fc gamma R-mediated phagocytosis KEGG:4970_Salivary secretion KEGG:4360_Axon guidance KEGG:5410_Hypertrophic cardiomyopathy (HCM) KEGG:5412 Arrhythmogenic right ventricular cardiomyopathy (ARVC)

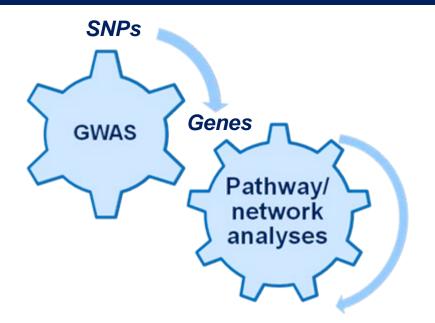

Results - Network analyses

1,904 nodes/genes 101,284 edges/interactions

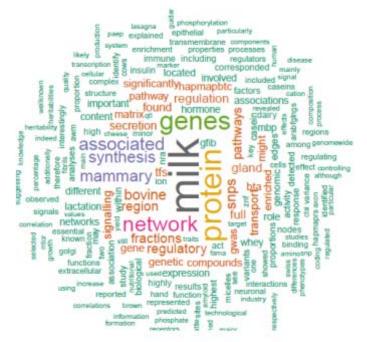
TF-trio GFI1B, NR5A1 and ZNF407



452 genes (24% of genes in the filtered AWM)


Results - Functional analyses

Conclusions


- ✓ Genetic control of milk protein composition
- ✓ Mammary gland functionality
- ✓ GFI1B, NR5A1 and ZNF407 as key regulators

Selection strategies to improve milk quality and technological characteristics

Thank you for your attention!

